Errata: QFT and CMT

I am grateful to Ben Strekha for bringing the following to my attention.

Important errata in **boldface**

Chapter 1

page 6, equation (1.41) shouldn't have a T in the denominator page 9, 3 lines below equation (1.58), $d = 3N - 1 \simeq 3N \rightarrow d - 1 = 3N - 1 \simeq 3N$ page 16, Equation (1.120)

$$\sum_{i} p_{i} dE_{i} = \sum_{i} \frac{dE_{i}}{dV} dV$$

(is currently missing a dV in the numerator on the right hand side). Chapter 2

page 23, equation (2.23) and (2.24) $dh \to \partial h$ and $d^2h \to \partial^2 h$ in the denominators page 24, equation (2.25):

$$E = -J \sum_{i=0}^{N-1} s_i s_{i+1}$$

(currently missing the i = 0 in the limit of the sum)

page 25, equation (2.28) the right hand side lower limit on sum: $t_i = \pm \rightarrow t_i = \pm 1$ Chapter 3

page 31, second line. $U(x, x' : t) \to U(x, x'; t)$

page 32, equation (3.22) should have an index n for the sum.

page 37, equation (3.58).

$$\langle s_i \rangle = \langle 0 | \sigma_3 | 0 \rangle = \langle s \rangle$$

page 38, in the sentence continuing after (3.60) $\exp(2K^*) \to \exp(-2K^*)$.

Chapter 5

page 57, equation (5.24) $\exp(-iS_c/\hbar) \to \exp(iS_c/\hbar)$.

Chapter 6

page 73, equation (6.2) drop the comma in $|\theta, \phi\rangle$

page 89, equation (6.118) drop the vertical bar in $e^{-\beta H}|...$

page 90, equation (6.127) $\Psi(0)(\rightarrow (\Psi(0))$.

page 92, equation (6.142):

$$G(\omega_n) = -\frac{1}{\beta} \int_0^\beta e^{i\omega_n \tau} e^{-(\Omega_0 - \mu)\tau} (1 - n_F(\Omega_0 - \mu)) d\tau$$

(currently $d\tau$ is missing the integration measure $d\tau$.

page 96, equation (6.176)

$$\int_{-\infty}^{\infty} e^{-\frac{1}{2}mx^2 + Jx} dx = \sqrt{\frac{2\pi}{m}} \exp\left[\frac{J^2}{2m}\right].$$

(currently is missing the integration measure dx) Chapter 10 page 160, equation (10.18) is missing an "=" sign after lim

page 162 Eqn. 10.27, the right hand side should be $+\frac{1}{2\pi} \ln |\mathbf{r} - \mathbf{r}'|$.

page 165, equation (10.36) $e^{S}(s) \to e^{S(s)}$

page 167, second to last paragraph before 10.2.3 $t_i = s_1 s_{i+1} \rightarrow t_i = s_i s_{i+1}$.

Chapter 11

page 173 Eqn. 10.61 RHS should read = $\sum_{\alpha} g_{\alpha} \langle i | \mathcal{O} | j \rangle$.

page 190, equation (11.44), exponent on right hand side: $K'(s_0s_1 + ... \rightarrow K'(s_1s_2 + ...$

page 194, Figure 11.3 second $K^* + \Delta K$ should be $K^* + \Delta K'$

Chapter 12

page 205, equation (12.36) $3u_0 \to 4u_0$.

Chapter 13 page 226, equation (13.11) $S_0^*(\phi_f) \to S^*(\phi_f)$

page 226, equation (13.15) drop the comma after ϕ

page 226, equations (13.17) and (13.18) $\mathbf{s} \to s$.

page 230, equation (13.44) $u_0 \to \frac{u_0}{(2!2!)}$.

page 232, equation (13.53) u_0) $\to u_0$

page 235 before equation (13.76) " the u_0 term in Eq. (13.66)" \rightarrow the " u_0 term in (13.67)".

page 237, equation (13.93) in the argument of ϕ' , $0/s \to 0 \cdot s$).

page 240, equation (13.111) $t \rightarrow |t|$.

page 243, equation (13.134)

$$\frac{du_0}{dl} = (4 - d)u_0 + \mathcal{O}(u_0^2) = \varepsilon u_0 + \mathcal{O}(u_0^2)$$

page 249, equation 3.157), (13.161), (13.162): need = sign after limits

Chapter 14

page 259, right after equation (14.51) $l_0^2 \rightarrow \lambda_0^2$

page 260, equation (14.52) and a sentence between (14.52) and (14.53) $l_0^2 \rightarrow \lambda_0^2$

page 260, after equation (14.53) ${\bf l_0}^2 \rightarrow \lambda_0^2$

page 260, equation (14.54) $\lambda^2 \rightarrow -\lambda^2$

page 261, equation (14.60) $B(m_0^2 \to B(m_0..), ...)$ and in the mini-paragraph following (14.60).

page 261, equation (14.61) and (14.62) $l_0^2 \to \lambda_0^2$

page 277, on (14.113), $d \to \partial$, in the next line $\partial \to d$

Chapter 15

page 287, equation (15.12) $e_2 \rightarrow \varepsilon_2$.

Chapter 16

page 306, last paragraph: "could" repeated

Chapter 17 page 321, equation ((17.11) $\exp(ipx) \rightarrow \exp(-ipx)$

page 332, equation (17.102)

.... =
$$\frac{1}{2} \left[(\partial_{\tau} \phi)^2 + (\partial_x \phi)^2 \right],$$

(currently is missing a "(" on the x-derivative term.)

page 329, equation (17.76) $\phi_+^2 \to \phi_+^2(0)$.

page 360 equation 18.168 $\delta \to \sqrt{\delta}$ within arctan.

page 360 LINE ABOVE equation 18.171: What if we start on the line x = -y?